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X

The dispersion of a chemically active solute in unidirectional laminar flow in a
channel of constant cross-sectional area is considered. Adsorption/desorption of
the solute at the wall or the presence of a bulk or surface chemical reaction intro-
duce additional timescales, in addition to the diffusive and convective ones, such
that, under certain conditions, the asymptotic evolution of the cross-sectional
mean concentration cannot be described by a one-dimensional Taylor—Aris model.
We use the centre and invariant manifold theories to establish the proper time
and length scale separations necessary for the existence of an effective transport
equation and to determine the dependence of the effective transport coefficients
on the kinetics of adsorption/desorption and reaction. For the case of classical
Taylor—Aris dispersion with no reaction, we derive the effective transport equation
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40 V. Balakotaiah and H.-C. Chang

to infinite order in the parameter, p, representing the ratio of the characteristic
time for radial molecular diffusion to that for axial convection. We show that the
infinite series in the effective transport model is convergent provided p is smaller
than some critical value, which depends on the initial concentration distribution.
We also examine the spatial evolution of time dependent inlet conditions and
show that the spatial and temporal evolutions differ at third and higher orders.

It is shown that, except for slow reactions with a kinetic timescale of the same
order as the transverse diffusion time, fast bulk reaction does not allow an asymp-
totic axial dispersion description. Slow bulk reactions do not affect dispersion
but a correction to the apparent kinetics may arise due to nonlinear interaction
among reaction, diffusion and convection. It is also shown that with a slow bulk
reaction, steady-state dispersion due to a coupling of reaction and transverse ve-
locity gradient can arise. Although this mechanism is distinct from the transient
Taylor—Aris mechanism, the dispersion coefficient is identical to the classical un-
reactive Taylor—Aris coefficient. Surface reaction of any speed yields the proper
asymptotic behaviour in time because the species still needs to diffuse slowly to
the conduit wall. In the limit of fast surface reaction, the Taylor—Aris dispersion
coefficient is reduced by a factor of 4.2, 7.1 and 4.0 for pipe, plane Poiseuille and
Couette flows, respectively, as the slow-moving solutes near the wall are depleted.
For the case of a linear surface reaction, we use the invariant manifold theory to
derive the effective transport equation to infinite order. We also show that the
radius of convergence of the invariant manifold expansion is approximately three
times that of the no reaction case.

We demonstrate that if adsorption/desorption is as slow as transverse diffusion,
an adsorption-induced dispersion, distinct from the Taylor—Aris shear dispersion,
exists. While the total dispersion may increase because of the contribution of
both, the Taylor—Aris component is reduced by a physical mechanism similar
to surface reaction. The adsorption/desorption induced dispersion coefficient is
shown to have a maximum when the adsorption equilibrium constant is exactly
2. Nonlinear Langmuir type adsorption at large concentration is shown to intro-
duce a nonlinear drift term which causes non-Gaussian pulse responses with long
tails. These tails are detrimental to separation chromatography since they cause
overlaps which increase with the length of the chromatograph.

1. Introduction

Taylor (1953) first pointed out that a channel flow with non-zero transverse gra-
dient can induce an effective axial dispersion of a solute at large time due to a
combination of axial advection and transverse diffusion. The asymptotic cross-
sectional mean concentration of the solute can be described by a one-dimensional
advection-diffusion equation. If a finite amount of solute is released initially, the
cross-sectional mean approaches a symmetric Gaussian distribution whose vari-
ance is related to the effective dispersion coefficient (Aris 1956). Several sub-
sequent authors have refined and quantified this phenomenon and its various
variants using several different analytical techniques. The moments method (Aris
1956, 1959; Brenner 1980) remains popular. Lungu & Moffat (1982) used a large
time and small wave number expansion, after a Fourier transformation, to deci-
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Dispersion of chemical solutes 41

pher the asymptotic behaviour. Pagitsas et al. (1980) have developed a projection
operator formalism for the treatment of general dispersion phenomena. Very re-
cently, Mercer and Roberts (1990) showed that the small wave number and large
time expansion of Lungu & Moffat in the Fourier space can be more conveniently
and systematically formalized by the centre manifold theory of dynamical sys-
tems (Carr 1981). They derived higher-order correction terms to the Taylor—Aris
model of shear dispersion. The convergence of their expansion in the axial wave
number essentially rigorizes the omission of higher moments at large time in the
moments method. If this series fails to converge, a Taylor—Aris model for effec-
tive transport does not exist. Fortunately, this does not occur in the classical
Taylor—Aris problem when the parameter, p, representing the characteristic time
for radial molecular diffusion to that for axial convection is sufficiently small. The
projection operator technique of Pagitsas et al. also allows derivation of higher
order terms.

It was realized at an early stage that Taylor—Aris dispersion is important in
many chemically active systems such as chromatographs and chemical reactors.
There have been many attempts in the literature to extend the work of Taylor
(1953, 1954) and Aris (1956, 1959) to systems with linear kinetics (Sankarasub-
ramanian & Gill 1973; De Gance & Jones 1978; Smith 1983, 1988; Barton 1984;
Dill & Brenner 1982; Shapiro & Brenner 1986; McNabb et al. 1993). The analysis
of Lungu & Moffat (1982) can also be considered as Poiseuille flow with sur-
face reaction even though heat transport with wall leakage was analysed. In fact,
all the above authors, with the lone exception of Barton, have considered only
an irreversible reaction for the bulk species at the surface which yields a mixed
boundary condition of the form,

V.C-n+¢2C =0, (1.1)

where V, is the gradient operator in the transverse directions, m is the unit
normal and ¢? is square of the surface Thiele modulus (ratio of diffusion timescale
to surface reaction timescale). Because of the depletion on the boundary, an
injected cloud of solute will diminish in its absolute mass as it convects and
diffuses downstream. At large time, all the above work has shown, in various
guises, that the solute concentration approaches an equilibrium shape y(z,y) in
the transverse directions where 1), is the normalized leading eigenfuction of the
transverse diffusion operator with mixed boundary condition,

C(z,y,z,t) ~ Co(z,t)o(z,y). (1.2)

The total solute mass decays in time as expected. However, Cy(z, t) itself obeys an
effective one-dimensional advection-diffusion equation with an apparent reaction
term where the effective advection velocity is faster than the average velocity and
the effective dispersion coefficient is smaller than Taylor—Aris’s inert case. Both
are due to depletion of slow moving solutes near the wall. (Note that Coy(z,t) is
not the cross-sectional mean concentration since v, is not a constant. However,
an effective equation for the mean concentration can also be derived.)

In addition to the irreversible surface reaction, Barton (1984) included a linear
bulk reaction (—kC) in the advection-diffusion equation. However, he removed
this term by the transformation C' = C’ exp(—kt) and considered only the trans-
port equation for C’ which is without a bulk reaction term. We shall use the in-
variant manifold theory to show that this treatment of bulk reaction is incorrect

Phil. Trans. R. Soc. Lond. A (1995)
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42 V. Balakotaiah and H.-C. Chang

if k is sufficiently large (more precisely, if the characteristic time for bulk reaction
is much smaller than the transverse diffusion time). Under this condition, the
requisite separation of timescales between the dominant eigenmode and the re-
maining modes does not exist and one cannot derive an effective one-dimensional
equation for the amplitude of the leading mode Cy(z, t). Physically, if the reaction
rate is so fast that the solutes do not have time to sample all the streamlines,
they will be depleted before the convection component of the Taylor—Aris mech-
anism sets in. An asymptotic behaviour like (1.2) will then be impossible. It is
also quite uninteresting since the reactants are exhausted within small bound-
ary layers in time and at the inlet. The reactor simply is not well designed as
most of its length is wasted. We derive here the proper order of the bulk kinetic
rate constant that allows the derivation of an effective one-dimensional transport
equation and delineate the dependence of effective dispersion coefficient on the
kinetics (or equivalently, the Thiele modulus). Distortion of nonlinear kinetics by
transverse diffusion and convection will also be analysed. An interesting steady-
state dispersion mechanism due to a coupling between the transverse velocity
gradient and reaction is introduced.

Unlike the bulk reaction, we show that surface reaction of any speed yields an
effective one-dimensional equation for the amplitude of the leading mode Cy(z, t).
Timescale separation exists because the species still needs to diffuse slowly to the
wall. The classical results of the previous work and some new results on the con-
vergence of the effective transport models are derived by the invariant manifold
theory. More importantly, we exploit the new approach to study some important
open problems in chromatograph theory. A chromatograph functions on the prin-
ciple that solutes are adsorbed onto the wall and because of their affinity for the
wall, their effective velocity is reduced and not increased as in the case of irre-
versible surface reaction studied in earlier work. From classical chromatograph
theory (Amundson & Aris 1973) with linear adsorption-desorption equilibrium
constant K, the velocity varies as (1 + K)~'. We show that if equilibrium is
not established, namely, if adsorption/desorption is fast but not infinitely fast
compared to axial convection, the same affinity mechanism can induce an effec-
tive dispersion that is distinct from shear dispersion. (This dispersion mechanism
exists even if the flow field is gradientless.) Physically, the bulk solute is be-
ing adsorbed and released to form a tail. This dispersion coefficient varies as
(u)2K?/[k,(1+ K)3], where k, is the adsorption rate constant. We use this result
to estimate the spread of solute pulses exiting a chromatograph. This dispersion
is especially important if the chromatograph is used for separation purposes (Sub-
ramanian 1991); the residence time must be sufficiently long such that the ‘tails’
produced by dispersion do not cause the solute pulses to overlap. Also appar-
ent in a high-concentration chromatograph effluent is the significant long tail and
front steepening of a solute pulse which invalidates the Gaussian distribution pre-
dicted by an advection-diffusion equation. This symmetry breaking may be due to
higher order odd derivative terms or, more likely, due to a nonlinear mechanism.
At high solute concentrations, more common in reactors than chromatographs,
the surface-coverage Langmuir effect renders the adsorption nonlinear. In a flow
reactor, nonlinear reactions for the surface species, which is far more common
than linear irreversible ones, also introduce similar nonlinear terms in the effec-
tive dispersion model. It is the treatment of these nonlinear problems that the
efficiency and clarity of the centre/invariant manifold theory is most welcomed.
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For nonlinear Langmuir adsorption kinetics, we derive an effective equation with
a nonlinear drift term that introduces a long non-Gaussian tail to the asymptotic
shape reminiscent of the anomalous behaviour detected in high-concentration
chromatograph effluents. The measured velocity, dispersion and skewness can
then be used to estimate the adsorption/desorption parameters. In general, how-
ever, the Langmuir effect is extremely undersirable in separation chromatographs.
We also show that for the case of flat velocity profile, there exists an effective
transport equation in the presence of adsorption, desorption and surface reac-
tion of any speed. We use this simple example to derive explicit expressions for
the dependence of the effective transport coefficients on the reaction rate con-
stant. Finally, we show that the transverse velocity gradients do not affect the
adsorption induced dispersion but the Taylor—Aris contribution is reduced by the
adsorption and desorption at the wall.

We review in the next section some important results from centre/invariant
manifold theory that are pertinent to this work. Sections 3, 4 and 5 deal with
classical Taylor—Aris dispersion with bulk and surface chemical reactions. Section
6 deals with linear and nonlinear chromatography models. The contributions of
this work are the extension of many of the classical results derived for linear
problems to nonlinear kinetics, determination of effective transport coefficients for
steady-state and spatially evolving systems, derivation of higher-order corrections
as well as the identification of the proper range of convergence of the various
effective transport models.

2. Centre/invariant manifold theory

Since many of the results derived in this work are based on the application
of ideas from the theory of dynamical systems, in particular, centre/invariant
manifold theories, we give here a brief review of some of these concepts. A more
formal and detailed approach to these concepts may be found in the books by
Carr (1981), Guckenheimer & Holmes (1986) and the articles by Coullet & Spiegel
(1983) and Roberts (1989a, b).

We consider the following dynamical system defined by a pair of ordinary
differential equations:

dC
d—tO = Fp(Co, C1) = —XeCo + fo(Co, C1), (2.1)
dC
—Zzl—t—l = F1(Co, C1) = =MC1 + f1(Co, C1), (2.2)

where the functions f;(Co,C;) (¢ = 0,1) are smooth (differentiable to all orders)
and contain only quadratic or higher order terms in the variables Cy and C,.
For simplicity, we assume that )y is non-negative, A; is real and positive and
0 < Xo/A1 < 1. We also assume that the origin is a simple zero of the functions
F; (i = 0,1), or equivalently, a hyperbolic fixed point of the dynamical system,
equations (2.1) and (2.2). Then, it follows from the stable manifold theorem (Carr
1981) that there exist smooth local stable manifolds My, M; that are tangent to
the eigenspaces Ey, E; of the linearized system. These manifolds are invariant in
the sense that any initial condition that is on one of these manifolds will remain
on it for all times. When \q = 0, the invariant manifold is also termed a centre
manifold since the direction of the flow on it cannot be determined when (2.1) and

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 1. The approach of the trajectory to the eigenspace Eg of the leading mode and its
nonlinear extension, the centre or invariant manifold My.

(2.2) are truncated at the linear terms. It should be noted that centre/invariant
manifolds are not unique but it is possible to find centre manifolds that are as
smooth as the functions that appear on the right-hand side of (2.1) and (2.2). On
the other hand, invariant manifolds, in general, are not analytic (Roberts 1989).

Of particular interest in our context is the decay of various initial conditions
to the invariant manifolds My, M;. This is shown schematically in figure 1. The
left-hand diagram shows the invariant manifolds (eigenspaces) Ey, E; and a typ-
ical trajectory for the linearized equations while the right-hand diagram shows
the same for the nonlinear system. It is clear from figure 1 that when \g < A,
the C; component decays on a much faster timescale (A;)~! and after an initial
transient, the trajectory approaches the invariant manifold E, corresponding to
the slowly evolving component Cy. When nonlinear terms are included, this be-
haviour persists except that the invariant manifolds are not the eigenspaces but
are tangent to them at the origin. Higher-order approximations to the invariant
manifold M, can be obtained by writing

Cl == Go(CO) = Z Aolcé (23)

=2

(Note that G and its first derivative must vanish at the origin as M, is tangent
to Ey.) The coefficients Ay; may be determined by substituting (2.3) in (2.1)
and (2.2) and comparing the coefficients of various powers of C; in the following
resulting equation:

S A [—Aooo i (co,zAmcg)J Y W) (oo,zzsmcg).
=2 3

i=2 i=2 i=2

(2.4)
When )y = 0, it is always possible to solve for Ay; for any 7 > 2. However, for
small but finite value of the ratio \g/\;, there is the possibility of zero divisors
in the expressions for Ag,;. It may be shown that the invariant manifold is unique
only up to the smallest order at which this occurs (Roberts 1989). Thus, for
t > AT'', the dynamics of (2.1) and (2.2) may be represented by the simplified
system:

= o+ fols, Go(s)), (2.50)

Phil. Trans. R. Soc. Lond. A (1995)
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Dispersion of chemical solutes 45
CO =8, (25b)
C1 = Go(s). (2.5¢)

The variable C; is termed as the slave mode as its value is determined by Cy
through (2.5¢). Equation (2.5a) is often termed the effective equation for the dy-
namics of the original system. Note that if the initial condition is on the invariant
manifold My, the effective equation is valid for all ¢ > 0. On the other hand, if
the initial condition is on M;, an effective equation for Cy does not exist. Thus,
the transient time after which the effective equation is valid depends not only on
the eigenvalues of the linearized system but also on the initial conditions.

When \; and A are of the same order but their ratio is still appreciably larger
than unity, a separation of timescale still exists and an effective equation can still
be derived but the transient time, after which the effective equation is valid, is
increased. It is in the limit when A; approaches Ay such that timescale separation
no longer exists that the dynamics at large time can no longer be described
by an effective equation. Note that it is also possible to determine higher-order
approximations to the invariant manifold M, irrespective of the ratio A\; to Aq.
This can be done by writing

=2

The coefficients A;; may be determined by substituting (2.6) in (2.1) and (2.2)
and comparing the coeflicients of various powers of Cj.

The centre/invariant manifold theory may be generalized to higher- (finite-)
dimensional systems as well as to infinite-dimensional dynamical systems that
have a discrete spectrum. In the applications considered in this work, Cy and fo
are r-dimensional vectors while C; and f; are N-dimensional vectors. (A\q and
A1 are diagonal matrices with real eigenvalues that are well separated.) Once
again, all the centre/invariant manifold calculations can be done by expanding
the functions in Taylor series and comparison of the coefficients of various terms.

3. Classical Taylor—Aris dispersion

We consider the classical problem of dispersion of a chemically inactive tracer
in unidirectional laminar flow in a channel of constant cross-sectional area. The
local concentration of the tracer is described by the convective diffusion equation,

oC ocC 2

a0 (u)f’(x',y’)@ = D, V°C, (3.1)
where 2’ is the axial coordinate, (u) is the average velocity and Dy, is the molecular
diffusivity. The channel cross-section is denoted by 2 and its boundary by 0f2;
(z',y') are transverse coordinates in {2 and

V2 =V? 4 08%/027, (3.2)

where V2 is the Laplacian operator in {2. In the transverse direction, (3.1) is
subject to the boundary condition,

V.C-n=0, (3.3)

Phil. Trans. R. Soc. Lond. A (1995)
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where n is the unit normal to 9f2. We take a and L to be the characteristic lengths
in the transverse and axial directions, respectively. (For example, for pipe flow,
a is the radius of the pipe and L is its length.) Then, the three timescales associ-
ated with (3.1) are the timescale for radial molecular diffusion, tp = a?/Dy,, the
timescale for axial convection, tc = L/(u), and the timescale for axial diffusion,
tz = L?/D,,. These three time constants give rise to two dimensionless numbers p
and e, representing their ratios. The Taylor—Aris mechanism involves the coupling
of a dominant transverse diffusion with weak convection and axial diffusion. The
timescale tp is then much smaller than the other two which will be considered to
be of the same order (e ~ O(p)). Defining dimensionless variables:

z=2'fa, y=y'/fa, z=2'/L, f(z,y)= f(az,ay),
t' a®>  tp . Dm tc _du) _tp (3.4)

T T TR P Tl T P W

Equations (3.1) and (3.3) may be written as

aC aC ) 8°C
B +pf(z, y)a =ViC +e¢ €55 0<z<l1l, t>0, (z,y)€ R, (3.5a)
V.C-n=0 on 091 (3.5b)

(Note that the same symbols are used for the dimensional as well as non-di-
mensional gradient and Laplacian operators.)

We have deliberately fixed the axial length scale (or equivalently, the dis-
tance downstream at which the concentration is measured) so that the convective
timescale is clearly defined. The parameter p, which is the ratio of the character-
istic time for radial molecular diffusion to that for axial convection, is assumed
to be small. It plays the same role as that of the wave number in the approach
of Lungu & Moffat (1982) and Mercer & Roberts (1990). We will carry out an
expansion in p in our subsequent analysis of nonlinear mechanisms. The dimen-
sionless parameter € will be stipulated to be of order p or smaller.

(a) Effective transport equation for cross-sectional mean concentration

Let Ao =0, A\; (1 =1,2,...) be the eigenvalues and v; (i =0,1,...) be the re-
spective orthonormal set of eigenfunctions of the self-adjoint eigenvalue problem:

Vi =Ny in 2; V,ah,-n=0 on 0. (3.6)

We note that the leading master mode 1, is a constant and simply represents
a mode with no transverse variation. Due to the no-flux boundary condition,
Jo¥:df2 = 0 for ¢ # 0, and these functions 1; represent the higher modes with
transverse variation but zero transverse average. These are eigenfunctions of the
dominant transverse diffusion operator in (3.5). When reaction terms are added,
these functions will no longer be the eigenfunctions of the dominant operator.
However, we shall still use them as bases and construct the true eigenfunctions
in the projected space spanned by them. Writing

(z,y,2,t) =Zszt1p1 Y), (3.7)
=0

Phil. Trans. R. Soc. Lond. A (1995)
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it is clear that the leading mode Cj is simply the cross-sectional mean concen-
tration. Equation (3.5a) may be written in its component form in the projected
space spanned by ;

ac e
6_120 —pa 00 Pzam 8 20, (3.8)
ac, 8C, & 8C, ., 9°C
FRE I i DLV e p (3.9)
where oy = / fob;d2 (6,5 =0,1,...) (3.10)
9]

and p* = D, /(u)L is assumed to be of order unity or smaller. (Note that the
normalization of the eigenfunctions implies agy = 1 and symmetry gives a;; =
a;;.) It follows from (3.8) and (3.9) that when p < 1, and p* is of order p? (¢ > 0),
Cj evolves on a timescale p~* while C; (j > 1) evolves on a timescale A;'. When
the trivial equation

Op/dt =0 (3.11)

is appended, (3.8), (3.9) and (3.11) describe a dynamical system that has two
zero eigenvalues at p = 0. (Note that the right-hand sides of (3.8) and (3.9) are
now quadratic in the variables.) In the language of the centre manifold theory,
the modes C; (j = 1,2,...,00) are slave modes, i.e. they decay very rapidly to
their equilibrium values determined by the evolution equation for Cy. Thus, a
centre manifold exists and the flow on it may be described by a single evolution
equation in terms of C, for large times (¢t > A;'). The form of (3.8), (3.9) and
(3.11) dictates that the centre manifold must be of the form,

> ,0"C )
Ci =Y Ajup 5 2 (=12...). (3.12)
n=1 Z
The constants A, may be determined by substituting (3.12) into (3.8), (3.9) and
comparing the coefficients of various powers of p. After some algebra, one gets
the following effective transport equation for Cp:

oC, oC, 8%Cy o t1C
80 +p 00 620 ( +/81p) 8 2 +Zﬂn s azn+lo? (3'13)

where

- ZaOiAin (n = 1, 2, . .), AjAjl = —a()j, )\jA]‘Q — Ajl — Zaj,-Ail,

oo n—2

/\Ajn_AJn 1— Zajz i,n— 1+Zza02 ZkAJ,TL k—1y ( >3’.] ) (3 14)

i=1 k=1

and the numerical constants B, depend only on the geometry of §2. Defining a
new dimensionless time based on the convective scale tc,

Phil. Trans. R. Soc. Lond. A (1995)
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and noting that the cross-sectional mean concentration,
1
Cn(est) = 5 / Clz,y, 2 ) A0 (3.16)
Q

is related to Cy by C,,.(2,t) = Co(z, )1, where 1), is a numerical constant depend-
ing on the geometry of §2, (3.13) may be reduced to the standard one-dimensional
generalized convective diffusion equation:

oC,, 0C, C, & oe,,
_8—7_'—+ Ep =" +6p) 55 922 +Zﬁnp Gl (3.17a)

In dimensional form, (3.17a) may be written as

OCm , \Cn & Cm
pv TG = L Dy

' > 0), (3.17b)

where the dispersion coefficients D,, are defined by
D2 = Dm + ,81 <’UJ>2G/2/Dm; .D2 = ﬂi—l (U)i(a2/Dm)i_l (l > 3) (3170)

We note that D, is the classical Taylor—Aris dispersion coefficient having units
of the diffusion coefficient while D,, (n > 3) having units of [length]™-[time] ! is
the generalized Taylor—Aris dispersion coefficient.

The arguments leading to the effective dispersion (3.17a) indicate that it is
valid only for p < t < 1, and p* of order p? (¢ > 0). The lower bound on 7
is determined by the time required for the flow of (3.8) and (3.9) to approach
the centre manifold (7 ~ 1/\; or equivalently, 7 ~ p/\;) while the upper bound
is determined by the convective timescale (or equivalently, the axial distance
downstream at which the concentration is measured).

The numerical constants 3; can be evaluated for any specific flow. The constant,

oo 2
Qg
= E .1

has already been calculated by several authors for some standard flows (Taylor
1953; Aris 1956; Dill & Brenner 1983). For example, for pipe flow, 2 is the unit
disc (0 < r < 1) and A; (¢ = 1) are the roots of the equation,

Jl(\//\‘) =0

\ 8
and o= V2 =2 (‘(@A))); Fr)=20-); an =2, g1

1
ﬁ] —642/\3 ZE

For plane Poiseuille flow, §2 is the open region —1 < y < 1 and

Ao =3P (i 21); o =1/v2; o = cos[iim(1—y)],
fly) =31 =y"); oo =—12y/2/i%x* (iodd), (3.20)
o0 1 2 '
B =18 2 Gone = 105"
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Dispersion of chemical solutes 49
For plane Couette flow, 2 is the unit interval 0 < y < 1 and

A= (i21); tho=1; ;= +/2cos(iny),
f(y) =2y; a0 = —4¢2/i2w2 (i 0dd),

1
51—322 67r6:§6'

It may be seen from (3.17a) that the inclusion of axial molecular dispersion adds
only a single term on the right-hand side and does not affect the coefficients
B: (i = 2). If (3.17a) is truncated at order p, it reduces to the standard one-
dimensional convective diffusion equation,

Cy,  0C, 1 8°Cy,

(3.21)

o " Pe o2 (3:22)
1 Dy,

It follows from (3.23) that the impact of axial molecular diffusion is negligible if
p* is of order p? or higher, while if p* is of order p, both radial and axial molecular
diffusion are equally important. When p* is of order unity, the contribution of the
Taylor dispersion term is negligible compared to the axial molecular diffusion.
The centre manifold approach may be used to show that the effective transport
equation for any other weighted mean concentration is identical to (3.17a). This
property is due to the linearity of (3.1) in C' and may no longer be true for the
case of nonlinear kinetics. We consider the weighted mean concentration defined

by
CIU:/Qw(a:,y)CdQ//Qw(m,y)dQ (3.24)

(where w = f gives convected mean or mixing cup concentration; Ultman &
Weaver 1979). Substituting from (3.7) and simplifying, we get

onC,

=0, +ZZAm,u2p G = LCm, (3.25)
i=1 n=1
where
L—1+ZZAmsz (9 o /%xy xy d‘Q//Q/"O >y 7y)d‘Q

=1 n=1
(3.26)
Since L is a linear differential operator in z, operating both sides of (3.17a) by L
gives an effective transport equation for C,,, which is identical to that for C,,.

(b) Convergence of higher-order approzimations

In practice, the effective transport equation (3.17a) is often truncated at the
second derivative term, which makes the dispersion Gaussian. However, retain-
ing higher order terms introduces non-Gaussian effects and long tails. A natural
question that arises is the convergence of the truncated effective equation to the
‘exact’ solution. As stated earlier this convergence for small but non-zero val-
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Table 1. Coefficients in the centre manifold expansion

B

A
~ N

7 pipe flow Couette flow  Poiseuille flow

1 0.20833E—-01 0.33333E—-01 0.19048E—-01
2 —0.34722E-03 0.00000E 00 0.23088E—-03
3 —0.15888E—04 —0.94596E—04 —0.28416E—04
4 0.11755E—05 0.00000E 00 —0.10523E—05
5 0.49257E—-08 0.57487E—06 0.83626E—07
6 —0.36895E—-08 0.00000E 00 0.56525E—08
7 0.10715E—-09 —0.43935E—08 —0.27333E—09
8 0.93087E—-11 0.00000E 00 —0.31659E—10
9 —0.72057E—-12 0.37657E—10 0.78450E—12
10 —0.10244E-13 0.00000E 00 0.17838E—12
11 0.32220E—14 —0.34596E—12 —0.83503E—15
12 —0.75089E—16 0.00000E 00 —0.99276E—15
13 —0.10632E—16 0.33306E—14 —0.14396E—16
14 0.70908E—-18 0.00000E 00 0.53764E—17
15 0.19357E—19 —0.33160E—16 0.18820E—-18
16 —0.38083E—20 0.00000E 00 —0.27836E—19
17 0.57559E—22 0.35863E—18 —0.16666E—20
18 0.14781E—22 0.00000E 00 0.13388E—21
19 —0.81784E—24 —0.35275E—-20 0.12758E—22
20 —0.35907TE—25 0.00000E 00 —0.56201E—24

ues of p is crucial to the validity of the present approach. We now examine the
convergence of the centre manifold expansion given by (3.17a).

We have used the expressions given by (3.14) to compute the first 100 coeffi-
cients in (3.17a). The first 20 of these are listed in table 1 for the three types of
flows considered above. The first seven coefficients computed for Poiseuille flow
agree with those reported by Mercer & Roberts (1990). In general, the coeffi-
cients decrease with increasing n, but there are some exceptions. For example,
for Poiseuille flow, |B12| > |B11| and |B2s| > |Ba24| while for pipe flow, |Bas| > |B27],
|Be7| > |Bes|, and |Bsg| > |Bss|- For Couette flow, all even coefficients vanish while
the odd coefficients are strictly decreasing. The convergence of the infinite series
on the right-hand side of (3.17a), may be examined by writing it as

0C,, 0C, . 9> oS
T ar [(p +ﬂ1p)5§ t3, Crns (3.27a)
where the linear differential operators S and 7 are defined by
> N 0 a*(u) 0
S=> Bun™ n= P5: = D 3" (3.270)

n=2
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Since the coefficients 3, exhibit an approximate periodicity of four, the method
described by Mercer & Roberts (1990) is most suitable for determining the radius
of convergence of the infinite series S. Using the first 100 terms, we computed the
critical radius to be 7. = 13.80, 11.87 and 9.05 for pipe, Poiseuille and Cou-
ette flows, respectively. Thus, the convergence of the centre manifold expansion
depends not only on the magnitude of the parameter p, but also on the axial
gradient, 8/0z, of the initial conditions. If the initial conditions are such that the
axial gradient is finite, the effective transport equation is valid for finite (non-zero)
values of p and non-Gaussian effects can be quantified by solving the higher-order
effective transport models.

Another way of establishing the convergence of the effective transport equation
is to compare the solutions of the truncated equations at different orders. Since
(3.17b) is invariant to translations in 2’, we may take the spatial domain to be
—00 < 2’ < oo and consider the solution to a pulse input

Cm(2,0) = 6(2"). (3.28)
An exact solution of (3.17b) and (3.28) may be shown to be
Cm(2',t') = NCpa, (3.29)

where C,,,q is the Gaussian profile,

Chg = W] (3_30)

1
J@an Dty P [_ 4Dyt
and N is the (nonlinear differential) operator defined by

IOOD o , 83 , 84
N = exp tn; nggm| =1+t Dsg—g+t'Dig—g+... (3.31)

We note that the infinite series appearing in N is identical to S and hence, the
convergence of the series S also establishes the convergence of the solution given
by (3.29). The operator N may be factored as

N = 1_[3 N], NJ’ = exp [tle 8z’j:| . (332)
3=
This property may be used to compute the solution given by (3.29) to any desired
degree of accuracy as well as establish the algebraic decay (in inverse powers of
time) to the Gaussian profile. Thus, the higher-order terms in (3.17b) make the
dispersion non-Gaussian at any finite time and only for ¢ — oo, the Gaussian
profile is attained.

(¢) Spatial versus temporal evolution

The above approach to determine the effective transport model is based on the
temporal evolution of an initial pulse as it is advected downstream. This approach
is not convenient for describing finite systems in which the dispersion is induced
through temporal forcing at the inlet, as is the case in a chromatograph. Here,
there will be a boundary layer at the inlet before the spatial centre manifold
is approached. We now examine the spatial evolution of C towards the spatial
centre manifold in the longitudinal direction and derive the effective equation
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for the mean concentration. For simplicity, we consider (3.1) without the axial
molecular diffusion term.

Let wo = 0, p; (i = 1,2,...) be the eigenvalues and ¥; (i = 0,1,...) be
the respective orthonormal set of eigenfunctions of the self-adjoint eigenvalue
problem:

V2, = —p; f(z,y)¥; in Q; V,¥-n=0 on 8N (3.33)

We note that unlike the temporal eigenfunctions, [, ¥;df2 # 0 for any i and
hence the leading mode no longer represents the cross-sectional mean. Writing

z,y,2,t) z:cz 2,t) W (3.34)

the component form of (3.5) is

Oc > 8(32
52—0 p€oo - PZ GOz ) (3.35)
Oc; > acz
521 +uic = Pfao pZ G (3.36)
where €5 = / lI/i !pj df? ('l,] = 0, ]., .o .), (337)
Q
Z = z/p. (3.38)

(Note that €gp = 1 and €;; = €;; and ¥y = 1),.) A spatial centre manifold of (3.35)
and (3.36) may be written as

> "¢
¢ = 0" 5 (3.39)
n=1

The constants 6,, may be determined by substituting (3.38) into (3.35), (3.36)
and comparing the coefficients of various powers of p. Since the form of (3.35)
and (3.36) is identical to (3.11) and (3.12), 6;, are given by (3.14) with A;,
aj; replaced by p;, €, respectively. Substitution of (3.38) into (3.35) gives the
effective transport equation for cy:

Oc 8c > 0" *le
5> 5 Z%p St (3.40)
where Y = — Z€0i6in (n=1,2,...). (3.41)

Equation (3.40) may also be written in terms of any weighted mean concentration.
For example, the cross-sectional mean concentration is given by

Cm = Wylco — 11p0co /0T + O(p®)] = L*cy, (3.42)

where L* is a linear differential operator in 7. Operating both sides of (3.39) by
L* gives the same effective equation for C,,, which in dimensional form may be
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Dispersion of chemical solutes 53
written as
oC, 0C,, <, 0""1C,
= dy, ! .
where the effective spatial evolution constants d,, are defined by
dn =V (a?/Dy)”  (n > 1). (3.44)

(Note that d,, has units of (time)".) The numerical values of ~,, can be found by
solving the eigenvalue problem defined by (3.33) and evaluation of the integrals
and sums given by (3.37) and (3.40). Alternatively, they can be related to the
temporal evolution constants by relating the spatial and temporal differential
operators appearing in (3.17a) and (3.39). It follows from (3.17a) that

8 oo
(=py-=-n+ > Ban™, (3.45)
T n=1
while (3.39) implies that
8 o0
’r’ s pa— = —C + Z ’ynCn+1. (3.46)
z n=1

Inverting the power series in (3.44) gives the relationship between the two sets of
constants 8, and ~,. The first six of these are given by

=01 Yo=—(64+267); 3 =P+ 50801+ 585
Yo = —(Bs + 68501 + 363 + 21667 + 1401);
vs = Bs + TBufB1 + 84053 By + TB285 + 2806165 + 2805 B3 + 4207; > (3.47)
Y6 = —(B6 + 88551 + 8B4B2 + 36040F + 463 + 72515205 + 1205: 63
+12ﬂ§’ - 180ﬁ§ﬁf - 330ﬁ2,311 + 132,@?).

It is interesting to compare the truncated forms of (3.39) with those of (3.17b)
without the axial molecular dispersion term . At zero order, the two equations are
hyperbolic and identical. At first order, both are nearly hyperbolic and the coeffi-
cient of the dispersion term is the same in both spatial and temporal formulations.
This may be explained by the fact that Taylor—Aris dispersion corresponds to the
spreading of a concentration profile along the characteristic z—7. Consequently,
the dispersion is Gaussian and may be described by either the spatial or the tem-
poral formulation. However, at third and higher orders, the spatial and temporal
evolutions differ. This distinction between the spatial and temporal evolutions at
third order was first noted by Roberts (1992). The relations given by (3.46) show
that the spatial and temporal formulations differ at all orders higher than three.
Since most physical systems are of finite extent and are observed at finite times,
one must combine the spatial and temporal evolution approaches to derive an
effecive transport model, and the proper initial and boundary conditions to be
used with that model. This is still an open problem that needs to be addressed.

\

J

4. Taylor—Aris dispersion with a bulk reaction

We now consider the classical Taylor—Aris problem (without axial molecular
dispersion) with a nonlinear bulk or volumetric reaction term. As we discussed in
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the Introduction, a long-time or large-distance asymptotic behaviour described
by an effective equation only exists for the bulk reaction case if the reaction
timescale is not smaller than the transverse diffusion timescale tp (¢* ~ O(1) in
the notation to be introduced next). If the reaction timescale is as slow as t. and
t, (#* ~ O(p)), transverse diffusion remains the dominant mechanism and {1;}
of (3.9) are still the eigenfunctions of the dominant (leading order) operator. We
then expect dispersion to be unaffected by reaction and vice versa. The most
interesting case occurs for ¢ ~ O(1) when transverse diffusion and reaction are
equally fast. In this case, reaction begins to affect how the solutes are distributed
along the streamlines and we shall show that the Taylor—Aris mechanism will
distort the apparent kinetics. Equation (3.5a) is now modified to

%% +pf<w>%§ =VIC-¢*r(C); 0<z<1, t>0,(z,y)€NR, (41a)

V.C-n=0 on 01, (4.1b)
where
2 2
2 _ E_R(CR) _ t_D _ R(CrC) _ Cr _ t_C _ f_
b en e "= R * TRy T T 1()' |
4.2

Here, ¢? is the square of the Thiele modulus, the ratio between the characteristic
time for radial molecular diffusion (¢p) to that for chemical reaction (¢g), and
r(C) is the dimensionless reaction rate normalized with respect to some reference
concentration Cg. The Damkohler number, Da, is the ratio between the charac-
teristic time for convection (¢¢) to that for chemical reaction (¢g). It is assumed
that the reaction rate r(C) is a smooth function, i.e. differentiable to all orders
in C. Equation (4.1) may be written in its component form,

aC aC, x c-
73_15_0 - _ _.~° - ; 01 <r (C’olbo + Zcilﬁi) ,¢o> , (4.3)

=1

0C; =

_Ei— + )‘ C pa]O _pz ]z - <T (CO"vbo + Zl Cz,l;bz) 7¢j> ) (44)
where (-, -) denotes inner product. As noted earlier, if $* ~ O(1), the linear kinetic
terms in (4.3) and (4.4) will now introduce a coupling between the dominant
diffusive mode Cy and the slave modes C;. This, in fact, will cause the true
dominant mode to decay nearly as fast as the slave modes. However, if there is
still an appreciable difference between the two rates, we can still capture the large
time behaviour with the invariant manifold approach. The asymptotes, however,
will take longer to reach.

(a) Effective transport equation for a slow reaction (¢* ~ O(p))

We first consider the case of a slow reaction for which ¢? is of order p, or
equivalently, ¢> = p Da, where Da is of order unity. Then, it is clear from (4.3)
and (4.4) that C, evolves on a timescale p~! while C; (j > 1) evolves on a
timescale )\j_l. Thus, for p < 1, a centre manifold exists and to first order in p,

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

A

P

\\ \\

Y

A

a
L\
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\

P
/\ \\

L9

%

y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Dispersion of chemical solutes 55
is given by
Do OCO 9 .
C» = — —_— O = 1 2 B .
J )‘j az + (p ) (.7 » < ) (4 5)

Substitution of (4.5) into (4.3) and noting that C,, = Cyt)y, we get the follow-
ing standard one-dimensional diffusion-convection-reaction model for the cross-
sectional mean concentration:

oC,,  0C, 1 0°Cy

or 0z  Pe 022
where Pe = 1/8,p. Thus, for slow reaction (tp < tr), the effective dispersion
coefficient is same as that for Taylor—Aris’s inert case.

The effective transport equation (4.6) may also be written in terms of other
weighted average concentrations. Combining (3.24), (3.25) and (4.6), we obtain

0C, n oC, _1_62Cw
or 0z  Pe 022
where L™! is the inverse of the linear differential operator defined by (3.26). Simple
algebraic manipulations show that
Lr(L™'C,) = r(Cy) + O(P%). (4.8)

Thus, (4.6) is valid for all weighted mean concentrations up to the order indicated.
It may also be shown that the spatial and temporal formulations agree up to the
same order.

The centre manifold approach may easily be generalized to cases in which the
reaction rate constant is dependent on the transverse coordinates. Writing

—Dar(Cp,)+0(Pe™®); pkrT<lpKz<l, (4.6)

— Da Lr(L7'C,) + O(p?), (4.7)

r = g(z,y)R(C) 6 = (og(z,y), Yi(z,y)), (4.9)
it may be shown that the effective transport equation is now modified to
aC,, , oCy,
0*C,, , 9
= bip 5.2 Da §,R(C,)[1+pBsDa R (Cp)| +0(®*); p<T<lp<Kz<]l,
(4.10)
where
ad 67 2'67;
By=-Y f\ , (4.11)
k=1 7\
= L, 4.12
=31 (4.12)

Now, there is a drift correction term and also a source correction term. Both of
these terms are of the same order of magnitude as the dispersion term and vanish
if either the rate constant is independent of position or the reaction is of zero
order.

(b) Effective transport equation for fast reaction (¢* ~ O(p°))

It follows from (4.3) and (4.4) that if ¢? is of order unity and p < 1, Cy evolves
on a timescale (¢%)~! while C; (j > 1) evolves on a timescale (\; + ¢?)~*. From
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(3.19) to (3.21), it is clear that there is still an appreciable separation between
these two timescales. Thus an invariant manifold exists and it is still possible to
derive an effective transport equation provided p < 1. After some algebra, the
invariant manifold may be calculated to be

600 2 6200

C; = Aljp—a‘z‘ + Agp 922 +0(p°) (J=12,...), (4.13)
where Alj = —Oljo/)\j, (414.)
A, — (A3j8200/8z2 — A4j¢2’l"”(00’l/)0)(600/82)2) (4 15)
N X,82Co/02" — r"(Cot)(0Co/d2)* 7 '
- Alg 2 a]zAlu (416)
Z Z /lekAlelk7 (417)
7,—1 k=1
/Bjik = (wzwkﬂ/)}) (.7 :0717"'; Z,k= 172>"')v (418)

and the primes on r denote differentiation with respect to C. The effective trans-
port equation is now modified to

0Cp  9Cm 1 8Cn Da_, . \(9Cn
or " o: e b2 DoTOn) P (C'")<

>2+O(Pe”2); (4.19)

Pe 0z
¢* ¢ )
LK7T<]l, —<Kz<1],
<A1 +g ST T
where B2 = Z Z Boik A1 A (4.20)
2ﬂ1 i=1 k=1

We note that the effective diffusivity is still independent of the Thiele modulus
but there is a nonlinear source term that is of the same order of magnitude as
the dispersion term. This source terms vanishes only for the special case of linear
kinetics. Since this small correction term is related to the gradient in C,,, it
only occurs under transient conditions. (A similar result can be derived using the
spatial evolution formulation and the spatial slave modes can be shown to be
related to the time derivative of the spatial master mode.) Nevertheless, kinetic
data are often deciphered from transient experiments and this correction will
partly disguise the true kinetics. It will also affect the performance of unsteady
reactors.

For the case of very fast reaction (¢* > O(p°)), the timescales for the evolution
of Cy and C; (j = 1,2,...) are no longer separated and hence it is not possible to
derive an effective transport equation. In this uninteresting case, boundary layers
exist at z =t = 0 and most of the reactant is consumed in these boundary layers.

(¢) Higher-order corrections for first-order reaction

It is straightforward to extend the centre manifold calculations to include
higher-order terms in p. The algebraic manipulations for general rate expres-
sions are tedious and will not be pursued here. Instead, we look at the special
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Dispersion of chemical solutes 57
case of linear kinetics. For r(C) = C, (4.3) and (4.4) simplify to
0Cy 0Cy > 0C;
e —170100—8;~ —P 2 Qi — P Da Cy, (4.21)
oC;
—ét—+)\ C; = pa,o pZaﬂ——pDaCj. (4.22)

Writing the centre/invariant manlfold as
o"C,
C; = Z Ajup" 5, (4.23)

after some algebra one gets the following effective transport equation for C,,:

ac,, o oG, 2 #?
(97' Z/Bn ot Da C,, ( ¢2<<7'<1 1+¢2<<z<1>,

(4.24)
where 3, and A;, are independent of ¢ and are again given by (3.14)! Thus, for
the special case of a first-order reaction, all the effective transport coefficients are
independent of the reaction rate constant.

We note that (4.24) is valid for a slow as well as a fast reaction. As ¢? increases
from order p to order unity or higher, the transient time after which (4.24) is valid
increases and approaches the convective timescale. As stated earlier, for ¢? > 1,
most of the reactant is consumed during this transient period and the effective
transport equation is no longer useful.

(d) Effective dispersion equations for steady-state models

We have seen that in the absence of a reaction, there is no steady-state Taylor—
Aris dispersion. However, when a bulk reaction is present, a spatial centre mani-
fold exists and there can be an effective transport equation for steady-state mod-
els. This is because of the fact that with reaction, even if the inlet concentration
is constant over the entire cross section, a transverse gradient will exist at any
down stream location since the residence time on each streamline is different and
the solute is depleted by a different amount. This coupling between reaction and
transverse velocity gradient is a steady-state one and hence different from the
transient Taylor—Aris mechanism involving diffusion and transverse velocity gra-
dient. However, like transient Taylor—Aris dispersion with a bulk reaction, care
must be taken such that the depletion of solute in the entrance boundary layer
before the spatial centre manifold is reached is avoided. This should be true for
a well-designed reactor in which the reaction takes place over the entire length
of the reactor and not just at the entrance. Consequently, we shall only examine
the case of a reaction which is slow with respect to the transverse diffusion time
(¢% ~ O(p) or equivalently, ¢? = p Da, where Da is of order unity). For the case
of a nonlinear reaction, the relevant amplitude equations are

d p >
HC—ZO = —p Da (r(cot0),%0) —p Dar'(cotbo) Z €0iCi
i=1

—%p Da r’ 601/10 Z Z ,BOikCz'ck + ... y (425)

i=1 k=1
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de; ' S
7 T ¢ = —p Dalr(covo), ;) — p Dat'(cotho) > esic

=1

—%p Da 1" (cotho) Z Z BijkCick + - . (4.26)

i=1 k=1

Thus a spatial centre manifold exists provided ¢? is of order p and p < 1. The
latter condition also ensures that the effective equation is valid over much of the
reactor length. The spatial centre manifold to first order in p is given by

¢ =—Pp DO,(T'(CO’(/JO),’(#J‘)/;L]‘ + O(p2) (.7 = 1> 2> ce ’Oo)' (4'27)

Note that the slave modes are related to the master mode ¢y and not its gradient.
This reflects the steady-state coupling between convection and kinetics. Substi-
tution of (4.27) in (4.25) and rescaling the spatial coordinate gives the effective
transport equation,

% = ~Datr(cnt), o) +7p Dt IILD) 52 4280
where v = i %gi (4.28b)

We now show that the source correction term in (4.28a) has the same effect
as adding a dispersion term to the right-hand side. Differentiating (4.28a) with
respect to z and substituting for the first derivative, we obtain

ey r(cotho)r’ (cotbo)
=Da’=———"———=+0(p). 4.29
dz? o Yo + O(p) ( )
Using this relation, the effective transport equation may be now be written as
1 d260 dCO 7'(00'(/)0)

Pedz dz PV ?) =05 4,

Pe dz? dz a Yo +0(p°) ; pKz<1, (4.30)
where 1/Pe = v;p. (4.31)

Since C,, = cyto, (4.30) is also valid for the cross-sectional mean concentration
(or any other mean concentration up to the order indicated). Thus the effective
diffusivity for the steady-state model is the same as that for the transient model
(since 4, = ;). Since the spatial eigenfunctions ¥; in (3.33) do not have zero
cross-sectional mean, the slave modes ¢; (j # 0) contribute to the mean con-
centration. Appropriate boundary conditions to the effective equation may be
derived by analysing this steady-state reaction-induced boundary layer at the
entrance. These conditions must also account for the transverse variation of the
inlet condition as it determines how the spatial dynamics approach the spatial
centre manifold. It is also possible to derive higher order corrections analogous
to the previous cases, but this and the corresponding boundary conditions will
be pursued in a subsequent manuscript.

5. Taylor—Aris dispersion with a surface reaction

In this section, we consider the classical Taylor—Aris problem with a linear sur-
face reaction term. As stated in the Introduction, this problem was first consid-
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ered by Sankarasubramanian & Gill (1973) and later by Lungu & Moffat (1982),
Smith (1983), Barton (1984) and Shapiro & Brenner (1986). Here we extend their
results by deriving the effective transport equation to infinite order by using the
invariant manifold approach. We also determine the region of convergence of the
invariant manifold expansion. Because diffusion and surface reaction occur in se-
ries, a timescale separation always exists and complete depletion of reactants in
small boundary layers do not occur even for very fast reactions. This renders the
surface reaction case most suitable for our analysis. The pertinent equations and
boundary conditions are

oC oc  _, .,
s +pf(z, )82 = V:iC; 0<z<1,t>0,(x,y) € 1, (5.1a)
V.C -n+¢2C=0 on 00, (5.1b)
V.C-mn=0 on 90, (992=09 +9y), (5.1c)

where ¢? = a’k,/Dy, (k. = ksay; ks is the surface rate constant, a, reaction
area per unit channel volume). Let A\; (¢ = 0,1,2,...) be the eigenvalues and
¥; (i = 0,1,...) be the respective orthonormal set of eigenfunctions of the self-
adjoint eigenvalue problem:

V2 = =N in 092, V.i-n+¢2; =0 on 902, V.p-n=0 on k.

(5.2)
Writing
Ole.3,2,8) = Cale, (o) + 3 O, 04 (2.0), 5:3)
equation (5.1) may be written in its component_form:
%C% + paoo 04 pz 02 + XoCo =0, (5.4)
%CtiJr +p2 i +AC—0 (G=12,..).  (565)

(Note that 1o is not a constant, Cy does not represent the mean concentration
and ogp is no longer equal to unlty) It follows from (5.4) and (5.5) that for p= 0,
Cy evolves on a timescale A\;* while C; (j > 1) evolves on a timescale A}’ The
spectrum changes with ¢2, but unlike the case of bulk reaction, remains dlscrete
and well separated for all values of ¢2. For example, for plane Couette ﬂow with
reaction only on the top surface, \; (j > 0) changes from j*?% to (j+ 1)?n? as ¢?
changes from zero to infinity. Thus, for p < 1, an invariant manifold ex1sts for the
flow defined by the dynamical system, (5.4) and (5.5), for all ¢2. The invariant
manifold may be calculated to be

et oC .
Cj = Z A.inpn azno (.7 = 1, 2, o ‘), (56)
n=1
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where the constants Aj, are given by
()‘j - )\O)Ajl = — gy,
()\j — )\0)Aj2 = aOOAjl - Z ajiAih

=1 oo n—2 (57)
(/\j - /\O)Ajn = CVOOAj,n 1 Z ajl i,n—1 + Z Z (0173 zkA] n—k—1
i=1 k=1
(n > 37] = )' )
Substituting this result in (5.4), we get the effective transport equation,
(900 G (9”“00
87’ aoo Z ,Bn 8zn+1 — Da Co, (58)

where
Da = \o/p, T = pt,

=1

As shown earlier, (5.8) is also valid for the cross-sectional mean concentration
or any other weighted mean concentration. In dimensional form, (5.8) may be
written as

(9C’0 (900 a C’0 /
5+ ZD Sgm — keCo (t' > 0), (5.10a)

where the effective Ve1001ty (ue), rate constant (k.) and the dispersion coefficients,
D,, (n > 2), are defined by

Ue = apo(u); ke = NoDn/a®*; D, =B, 1(u)"(a*/Dy)"" (n>=2). (5.100)

Equations (5.7) and (5.9) provide the requisite formulas for the dependence of
the effective transport coefficients on the surface Thiele modulus ¢?.

Tables 2, 3 and 4 show the variation of agy, Ao and (3; as a function of ¢? for
the three types of flows considered in the previous section. (Note that for the
case of pipe and Poiseuille flows, 92, is assumed to be empty while for Couette
flow, 0(2; is the top surface while 9(2, is the bottom surface). For the case of a
slow reaction (4?2 is of order p), the numerical factor 8; approaches the classical
Taylor—Aris limit (== 18 135, 30) for pipe, Poiseuille and Couette flows, respectively.
For infinitely fast surface reaction (¢? > 1), 8; approaches another limit (ca
5650 3550 115)- Thus, for the three geometries considered, the effective d1ffusw1ty,
D,, decreases by a factor 4.2, 7.1, 4.0, respectively.

For the case of pipe and Poiseuille ﬁows, the coefficient oy, giving the effective
velocity increases from 1.00 (for ¢? = 0) to 1.56 and 1.30, respectively (for ¢? =
00). For the case of Couette flow, it decreases from 1.0 to 0.595. This decrease
may be explained by the fact that we have taken the reaction plane to be the top
surface at which the velocity is maximum. In order to examine the convergence
of the invariant manifold expansion for the case of a fast surface reaction, we
have computed the first 100 coefficients in (5.8) for ¢? = co. The first 20 of these
are listed in table 5 for the three types of flows. From these numerical values, we
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Dispersion of chemical solutes 61

Table 2. Effective transport coefficients for surface reaction (pipe flow)

¢2 B! Qoo Vo

0.01 47.984 1.0017 0.14124
0.02 47.970 1.0033 0.19950
0.05 47.932 1.0083 0.31426
0.10 47.888 1.0164 0.44168
0.20 47.869 1.0325 0.61697
0.50 48.293 1.0778 0.94077
1.00 50.265 1.1440 1.2558
2.00 57.131 1.2446 1.5994
5.0 83.562 1.3938 1.9898
10.0 117.19 1.5461 2.3572
20.0 149.83 1.5189  2.2880
50.0 177.69 1.5461 2.3572
100.0 188.56 1.5551  2.3809
1000.0 199.01 1.5630 2.4024
00 200.20 1.5638  2.4048

computed the radius of convergence of the invariant manifold expansion to be

a*(u) 0
e = ———=— = 37.7,38.0,24.3 5.11
=D o (5.11)
for pipe, Poiseuille and Couette flows, respectively. Comparison of these values
with those of the centre manifold expansion shows that the radius of convergence
increases by a factor three as ¢? changes from zero to infinity.

6. Effective dispersion in chromatographic models

In this section, we consider some linear and nonlinear problems in chromato-
graphic theory and derive effective dispersion models. As stated in the Introduc-
tion, a chromatograph functions on the principle that solutes are adsorbed onto
the wall (or solid packing) and because of their affinity for the wall, their effective
velocity is reduced. From classical equilibrium chromatograph theory (Amund-
son & Aris 1973) with linear adsorption—desorption equilibrium constant K, the
velocity varies as (1 + K)~!. We first show that if equilibrium is not established,
namely, if adsorption/desorption is fast compared to axial convection, but oc-
curs at a finite rate, the affinity mechanism can induce an effective dispersion.
Intuitively, one expects the adsorption/desorption process in a chromatograph
to reduce the Taylor—Aris dispersion mechanism since, like surface reaction, it
removes slow-moving solutes near the wall. However, unlike surface reaction, the
solutes are released after a time lag related to the adsorption/desorption kinetics
and the capacitance of the wall and one hence expects a new dispersion mecha-
nism that can over compensate for the reduction in Taylor—Aris dispersion. One
can also visualize this new mechanism as a special kind of Taylor—Aris disper-
sion by considering the wall as a streamline with zero velocity. The transverse
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Table 3. Effective transport coefficients for surface reaction (Poiseuille flow)

2 Bt 000 VAo

0.01 52.640 1.0013 0.099833
0.02 52.782 1.0027  0.14095
0.05 53.212 1.0066  0.22176
0.10 53.949 1.0130  0.31105
0.20 55.489  1.0252 0.43284
0.50  60.584 1.0578  0.65327
1.00 70.266 1.1009  0.86033
2.00 91.885 1.1579 1.07687
5.0 153.494 1.2296 1.31384
10.0 220.565 1.2647 1.42887
20.0 281.832 1.2841 1.49613
50.0  333.341 1.2961 1.54000
100.0  353.490 1.3000 1.55524
1000.0  372.970 1.30357 1.56923
00 375.213 1.30396 1.57079

Table 4. Effective transport coefficients for surface reaction (Couette flow)

o2 Bt Qg0 Vo

0.01 30.050 0.99834 0.099833
0.02 30.101  0.99668 0.14095
0.05  30.256 0.99178 0.22176
0.10  30.524 0.98377 0.31105
0.20  31.093 0.96840 0.43284
0.50  33.013 0.92708 0.65327
1.00 36.686 0.87189 0.86033
2.00  44.612 0.79757 1.07687
5.0 64.695 0.70110 1.31384
10.0 83.407 0.65210 1.42887
20.0 98.577 0.62415 1.49613
50.0 110.335 0.60659  1.54000
100.0 114.744 0.60066 1.55525
1000.0 118.922 0.59531 1.56923
0 119.399 0.59472 1.57079

gradient in the velocity field for the Taylor—Aris mechanism is then present even
if the fluid velocity profile is flat. Instead of a diffusive mechanism to sample
streamlines of different velocities, we replace it with the adsorption/desorption
process, which like diffusion, is dependent on the concentration gradient (differ-
ence). However, unlike diffusion, for the same concentration difference, the flux in
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i pipe flow Couette flow  Poiseuille flow
1 0.49950E—-02 0.83753E—02 0.26652E—02
2 0.49206E—04 —0.13878E—03 0.41154E-04
3 —0.11850E-06 0.14054E—-06 0.42663E—06
4 —0.14514E-07 0.86498E—07 —0.10895E—08
5 —0.17859E—-09 —0.25806E—08 —0.17021E—09
6 0.29071E—11 —0.65890E—11 —0.39339E—11
7 0.12584E—12 0.29462E—11 —0.31296E—13
8 0.77189E—15 —0.85853E—13 0.95547E—~15
9 —0.48611E—16 —0.74572E—15 0.41724E—-16
10 —-0.12510E—17 0.13114E—-15 0.69960E—18
11 0.33958E—20 —0.34068E—17 —0.16101E—20
12 0.74061E—21 —0.57887E—19 —0.41964E—21
13 0.11614E-22 0.65426E—20 —0.11410E-22
14 —0.20522E—24 —0.14467E—21 —0.10401E—24
15 —0.10470E-25 —0.41086E—23 0.33393E—-26
16 —0.75539E—28 0.34625E—24 0.15934E-27
17 0.47550E—29 —0.62098E—26 0.28617E—29
18 0.13451E—-30 —0.28144E—-27 —0.66313E—32
19 —0.31584E—33 0.18930E—28 —0.18899E—32
20 —0.87563E—34 —0.25555E—30 —0.53658E—34

opposite directions can be different depending on the ratio between the adsorption
and desorption rates, the adsorption equilibrium constant K. This asymmetry al-
lows an interesting coupling with the velocity gradient to yield a maximum in
dispersion with respect to K. Nevertheless, because this adsorption/desorption
dispersion mechanism is like the Taylor—Aris mechanism in its physical origin,
it is also a transient phenomenon. As a result, the spatial evolution problem,
which is more consistent with the operation of a chromatograph, agrees with the
temporal evolution problem up to second order. Here, we examine the simpler
temporal problem only. We also exploit the nonlinear capability of our approach
to show that at high solute concentrations where the surface-coverage Langmuir
effect renders the adsorption nonlinear, the effective transport equation reduces
to the Burger’s equation which is responsible for non-symmetric pulse responses.
The effects of molecular diffusion in the fluid phase, surface chemical reactions
as well as that of the velocity profile is also considered.

(a) Linear adsorption—desorption models with flat velocity profile

We consider the classical problem of linear adsorption and desorption with a
flat velocity profile. Neglecting transverse as well as longitudinal diffusion, the
evolution equations describing the concentrations of the solute in the fluid and
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solid phases may be written as

0C% 0C%

W + <U>—6-z—l = -k, Cs + deS, (61)
0C;
—52,_ = kaCf - des> (62)

where k, and kq are adsorption and desorption rate constants, respectively. Note
that since we are considering an infinitely thin wall phase, the capacitance for
both equations are identical if the surface concentration is renormalized with
respect to the fluid volume. The three timescales associated with (6.1) and (6.2)
are that of axial convection (tc = L/(u)), adsorption (t, = 1/k,) and desorption
(tpe = 1/kq), or equivalently, the adsorption equilibrium constant, K = k,/kq.
Defining dimensionless variables

t="kyt', z=2'/L, p,=(u)/Lk,. (6.3)
Equations (6.1) and (6.2) may be written as
dc/0t = Ac + N(e), (6.4)
where
C -1 K1 0 —paBCf/az
c=|C, |, A=|1 —-K*' 0|, N(c¢)= 0 . (6.5)
Da 0 0 0 0

In what follows, we shall assume that p, < 1 and K is of order unity, i.e. adsorp-
tion and desorption are rapid compared to axial convection. It is clear that the
matrix A has two zero eigenvalues (A; = A, = 0) and one negative eigenvalue
(A3 = =1 — K~1). After a similarity transformation, (6.4) may be transformed to
the canonical form,

oc, Da oC, 0G0,
o ‘“K+1(az * 82)’ (6.6a)
802 _ 1 pa,K 801 802
Opa
—3—t‘ = 0, (666)
where the canonical variables C'; and C, are related to Cy and C; by
Ci=C+Cs, Cy=KC;—Ci. (6.7)

Note that C; is the total concentration of the solute under equilibrium conditions
while C, measures the deviation from the equilibrium. The centre manifold of
(6.6) may be calculated to be

_ - Pa " 8ncvl
C"";A" (K+1) oz’ (68)
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where
K? K(1-K)
T ‘“_ﬁ-fAl’
A, =-FO=B)N ZAA (m > 3) i
m 1+K m—1 1+K m—i—1 m =z .

(Note that when K =1, Ay; =0, j = 1,2,... .) Substitution of (6.8) into (6.6a)
gives the following effective transport equation,

601 1 601 > 3"“01
5 TTTE 02~ 2P (6.10a)

n=1

where T=p.t = (u)t'/L; Bn=-A,/(K+1)"". (6.100)
Truncating (6.10a) at n = 1 gives the following convective diffusion equation,

oc; 1 8C, 1 9°C

= 1
ar + 14K 90z  Pe 922’ (6.11a)
1 p. K?

h — = .
where P~ A+ K) (6.11b)
Thus the effective velocity and dispersion coefficient are given by

2 Kz
W p Wl K (6.11c)

Ue:1+K, e ka (1+K)3

Note that D, is a non-monotonic function of K and approaches zero when ad-
sorption is much faster or slower than desorption (K < 1 or K > 1). In these
two limits, complete retention or negligible adsorption occur and there is hence
no mechanism for dispersion. The maximum value of D, is attained when K = 2
and is given by

De,max = 2—4'}<u>2/ka- (612)
This maximum at K = 2 is intriguing but we are unable to determine its precise
physical origin. In fact, one would expect the diffusive analog K = 1 to yield the
maximum dispersion. This is indeed the case for an analogous problem studied
by Aris (1959). For the case of mass transfer between a fluid in a pipe with a thin
porous wall, Aris has shown that the effective dispersion coefficient is given by

a(u)? K2
2k. (1+ K)*’

where K is the equilibrium constant, a is the pipe radius and k. is the mass
transfer coefficient. It is clear that the maximum value of D, y.x occurs at K = 1
and is equal to0 De max = a(u)?/32k.. The difference between the two cases is that
our model does not allow diffusion in the solid phase while (6.13) accounts for it.

The concentration C; is not an easily measurable concentration and it is prefer-
able to write the effective equation (6.10a) in terms of the solute concentration
in the fluid phase, C;. This can be done by noting that

Cl + Cg C ( Pa )71 8"01 ok
_ _ = 14
G 1+K 1+K 1+KZ K+1) 0z0 LG, (6.14)

Phil. Trans. R. Soc. Lond. A (1995)
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where L™ is a linear differential operator. Operating both sides of (6.10a) by L**
gives the effective equation for Ct, which is identical to that for Cj.

Equations (6.11¢c) may be used to estimate the length of the chromatograph
needed so that the distance between the peaks of any two solute pulses exceeds
the spread between them. The distance between peaks is given by

Azg = (t; — ta2)(u), (6.15a)

where tl = L/Ule, tz = L/Uge, (615b)
while the spread between the peaks is given by
Al’s = 2(\/(2D1et1) + \/(2D2et2)). (6150)

(The definition of the spread is based on 95.5% of the total area of the pulse, or
equivalently, two standard deviations from the mean.) Thus Az4 exceeds Az, if

L8 1 K1 K
(u) © (K1 — K2)? [Vka 1+ K1 Ve 1+ Ky

(6.15d)

This equation may be simplified if one of the species adsorps/desorps much faster
than the other. As expected, (6.15d) predicts that if K; # K, it is always possible
to achieve the required separation by increasing the residence time. As noted by
Aris (1959) for the mass transfer problem, the minimum residence timescales by
a —2 power with respect to the difference in the two affinities.

It is interesting to determine the region of convergence of the effective model
given by (6.10a) and compare it with that of the classical Taylor—Aris dispersion
model. We have computed the first 100 coefficients in (6.10a) using the analytical
expressions, (6.9) and (6.10b), for K values of 0.1, 0.5, 1.0, 2.0 and 10. For the
special case of K = 1, all even (3, vanish and the odd coefficients are strictly
decreasing with alternating signs. For all other values of K, the coefficients are
non-monotonic and there is no definite pattern of signs. Application of the method
of Mercer & Roberts (1990) showed that the centre manifold expansion in (6.10b)
converges provided

o _wo _ K
paaz k.02 T K+1

Thus, the largest region of convergence is obtained when the desorption rate
constant is zero.

(b) Effect of molecular diffusion in the fluid phase

The above analysis may be extended to include axial molecular diffusion in the
fluid phase. In this case, (6.6a) and (6.6b) are modified to

0Ci _ pa <3C'1 n 302) PPa (8201 3202)
ot K+1\ 0z 0z K+1\ 022 022 )’

802 i paK 801 802 Kp*pa (3201 8202

ot <1+K) o ( 5z ' o2 ) K+1 \ 02 92 ) (6.165)
Phil. Trans. R. Soc. Lond. A (1995)
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where p* = D,,/(u)L is assumed to be of order unity or smaller. To leading order,
the centre manifold is now given by

pK? 0C) K?p*p, 0°Cy
(K+1)2 0z (K +1)% 022

C,=— + O(p?) (6.17)

and the effective equation for C is given by

801 1 801 _ [ paKz p* 8201
(

or V17K 0 |(K+1F T K+1) 022

2K°p'pa 0°C1 | K’p*’p, 0Cy 2
(K +1)% 923 + (K1) 071 + O(p;). (6.18a)

When p* is of order unity, the contribution of adsorption induced dispersion may
be neglected compared to axial molecular diffusion. In this case (6.18a) reduces
to the convective diffusion equation with the effective velocity and diffusivity
reduced by a factor (1+ K). When p* is of order p, the contributions of adsorption
induced dispersion and axial molecular dispersion are of equal order of magnitude.
However, in this case the last two terms in (6.18a) are of higher order and may
be neglected. The effective velocity is again reduced by a factor (1 + K) but the
effective diffusivity is now given by

_ Dq +(u)2 K?
1+ K ke I+ K

D, (6.18b)

The effective diffusivity is a monotonic decreasing function of K if D, > (u)?/3k,.
Otherwise, the curve D, versus K has a minimum and a maximum and the
adsorption/desorption mechanism can increase the overall dispersion. Finally, we
note that when p* is of order p?, the contribution of axial molecular diffusion is
negligible and (6.18a) reduces to (6.11a) upto leading-order terms.

(¢) Effective dispersion model with Langmuir adsorption

At high concentrations of the solute, saturation effects (or surface coverage)
becomes important and the rate of adsorption is not linear in the concentrations.
We consider here the case of Langmuir adsorption for which (6.1) and (6.2), after
proper normalization, may be written as

0C oCy Cs

——8t + Da -—8_2— = '—Cf + K + Csza (619)
oCs Cs
5 Ct — % C:Cs. (6.20)

Note that the nonlinear saturation effect impedes adsorption while enhancing
desorption. We here expect a nonlinear enhancement of the effective velocity,
namely, a nonlinear drift term that accelerates the front edge. Since the linear
terms are unchanged, (6.7) may again be used to write (6.19) and (6.20) in
canonical variables:

(6.21a)

301 _ Pa (801 802)
ot K+1\ 0z 0z )’

Phil. Trans. R. Soc. Lond. A (1995)
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602 o 1 paK (901 802> 1 9 9
ot (1+K>C2 K+1 ( 52 oz +1+K[K01+(K NGC =Gl
(6.21b)
To leading order, the centre manifold is now given by
p.K? 0C, K2C? 3
= — s .22
=1y 0s " (waay Ol O (6.22)

and the effective equation for C is

801 + 1 (901 . paK2 6201 2K2 C 601

or 14+ K 9z (K+1) 922 (K+1)33 ' 8z
Note the appearance of nonlinear convection terms that are associated with Lang-
muir adsorption. Equation (6.23) implies that a finite rate of adsorption/desorp-
tion is equivalent to adding a viscous term to the standard hyperbolic conser-
vation laws used in equilibrium chromatography theory! Thus, the discontinuous
solutions predicted by equilibrium chromatograph theory disappear if adsorp-
tion/desorption are assumed to occur at a finite rate. Equation (6.23) may be
written in the conservative form,

601 6(] . Cl K2 paK2 (901

+O(|pa, Ci ). (6.23)

——+—=0; ¢g= C? - 6.24
or T Y Tkt Er O a0 (629
which gives the effective velocity and dispersion coefficient to be
(u) [ K*Cy ] (u)?  K?
e = 1 ) e = —— ——. 6.24b
CTTYR T (K + 1) ka (1+ K)3 (6:248)

Equation (6.24b) predicts that the effective velocity of the solute increases with
the concentration. Thus, a pulse that is initially symmetric will develop a long tail
toward the lower concentration. We further note that by defining the following
variables in a moving coordinate Z,

2K201 T paK2
‘TETY S 11K T (K+1)2 (6:25)
Equation (6.23) transforms to the Burgers’ equation
de  dc d%c

Response of this equation to an arbitrary initial condition can be derived us-
ing the standard Cole-Hopf transformation (Whitham 1974). For large v (large
p. or small k, corresponding to slow adsorption), which is not consistent with
our formulation, (6.25) would behave like the linear adsorption case, (6.11a) at
large times. Its asymptotic behaviour would then be described by an effective
convection-diffusion equation like (3.22). The asymptotic behaviour of (6.26) for
the pertinent case of small v, however, suggests anomalous transport for strong
Langmuir adsorption. (Note that v is always of order p, regardless of the magni-
tude of K.) The asymptotic response to a delta function initial condition yields
a right-angle triangular shock with the back edge fixed at the initial location of
the delta function and the front edge moving forward at the speed of 1/(26). The
slope of the triangle approaches ¢ ~ Z/# with the maximum at the front edge

Phil. Trans. R. Soc. Lond. A (1995)
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decaying at the rate of cpax ~ +/(2/6). A simple calculation of the moments for
this response yields that the centre of mass moves at a speed of 23/2/(3,/8) in the
moving coordinate frame and the variance increases linearly in time, o ~ 6/9.
Although this seems like a diffusive asymptote in the moving frame at large 6,
calculation of higher moments yields the result that the mth moment varies as
§™/2. This implies that the higher order terms quickly dominate the drift velocity
and dispersion terms if an equation like (3.17a) is used to describe the response of
(6.26). Consequently, Langmuir adsorption introduces an anomalous dispersion
that can only be described by the Burger equation in (6.26). This nonlinear effect
is extremely undesirable in separation chromatography since the long tails of the
solution to Burger’s equation will cause significant overlap between solute pulses.
Unlike the dispersion-induced spread in the linear case, the nonlinear drift term
introduces a front edge which accelerates away from the back edge (the location
of the pulse if the Langmuir effect is absent). Since the speed of the front edge of
a pulse increases by /0 while the back edge of another pulse in front of it moves
at constant speed, overlap between the two will eventually occur. Hence, unlike
the linear adsorption case, separation cannot be ensured with a sufficiently long
chromatograph. The solution, in fact, involves choosing a chromatograph of ap-
propriate length such that the separation has occured due to the linear hyperbolic
terms of (6.23) and yet nonlinear acceleration has not caused significant asymme-
try and overlap. This chromatograph must also be long enough to avoid overlap
by dispersion spreading as dictated by (6.15d). If the linear dispersion term is
the same order as the nonlinear drift term, which is often the case, the interval
of appropriate chromatograph length may be small or even non-existent. One
would then need to minimize the Langmuir effect by decreasing the solute con-
centrations, which is practically unsound, or by increasing the wall capacitance
neglected in our study, namely, allow diffusion into the solid phase.

Higher-order correction terms to the effective transport (6.24) may easily be de-
rived using the centre manifold approach. Inclusion of third-order terms modifies
(6.24) to

oc, 0
a—rl+a—§:0’ (6.27a)
1 K? (K —1)K®
Q_[1+K+(K+1)301Jr (K +1)5 Cl]cl

[paK2 3p.K?(1 — K) ]801 p?K3(1 — K) 0°C,
- 1

(K+ 1)3 - (K+ 1)5 9z - (K+ 1)4 922 (627b)

Now, the effective velocity as well as diffusivity are concentration dependent. We
also note that all the cubic terms in equation (6.27b) vanish for the special case
of K =1.

(d) Effective dispersion with adsorption, desorption and surface reaction

‘We now consider the effect of a linear surface reaction on the effective dispersion
coefficient. In this case, (6.2) is modified to
0C;
—a—tT = kaCf - de's - ersa (628)

Phil. Trans. R. Soc. Lond. A (1995)
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where k, is the surface reaction rate constant. For the case of a slow surface
reaction, we write

k k.L

— = Kgr =paDa; Da=-~

ka R p <U>
and assume that Da is of order unity. The analysis in §6 a may be repeated and
it is straightforward to show that the effective equation is given by

oCc, 8C, 1 paDa Kz]  pK? 9°Ci DaK )
or o2 [1+K (K +1) Ci +O(p;)- (6.30)

T (K+1)% 022 K+1
It follows from (6.30) that the effective dispersion coefficient, velocity and rate
constant are given by

(u)? K2 (u) [ k. K2 K

LA S 7 P S O Ty T
k O+ KP " 14K | "ROrKZE 1+ K

Thus there is a drift correction to the effective velocity, which is slightly higher
than that predicted by equilibrium chromatograph theory.

When the reaction is fast (Kg is of order unity or larger), the matrix A4 in (6.5)
is modified to

(6.29)

D, = (6.31)

-1 Kt 0
A=|1 —-K'-Kg 0 [. (6.32)

0 0 0

The two non-zero eigenvalues of A are now given by
202 = -1+ K ')+ Kg) £ [(1+ K '+ Kg)* — 4Kg]. (6.33)

For Kr =0, \; =0, Ay = —(1+ K ') while for Kg > 1, A\; approaches —1 and ),
approaches (—K ' — Kg). Thus the timescales are well separated for all values of
Ky and an effective transport equation can be derived provided p, < 1. It may
be shown that the flow on the invariant manifold is described by the effective
transport equation,

801 801 . 8201 )\101 2
'57_— + 0£1'—(§Z— = 5117&—6;2— + ( i ) + O(pa), (6.34(1)
where
1
o1 = m, (6346)
-1
b = KA+ K~' 4 Kg)2 (6.340)

1+ K14+ M)2)1+KN+ K14+ Kg)2 (A — )
The effective dispersion coefficient, velocity and rate constant are now given by

D, = B1{u)?/k,, (6.35a)
Ue = o (u), (6.35b)
ke = —(u)A1/Lp, = —A1ka. (6.35¢)

For Kr — 0, these effective values approach the slow reaction limit (equation

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 2. Dependence of the constant 31 for effective dispersion coefficient on the
dimensionless surface reaction rate Kr and the adsorption equilibrium constant K.

(6.31)) while for K > 1, they approach another asymptote

_ 1w
D, = KEKL b (6.36a)
ue = (u), (6.36b)
ke = k. (6.36¢)

Thus the effective diffusivity approaches zero for a fast reaction. We show in
figure 2 the variation of §; as a function of Ky for three typical values of K. For
K = 10, the effective dispersion coefficient increases first and then decreases to
zero. It may be shown that the effective velocity given by (6.35b) is a monotonic
function of Ky for all values of K. It increases from (u)/(1 + K) to (u) as Kr
increases from zero to infinity. Similarly, the effective rate constant decreases
monotonically from the value given by (6.31c) to that given by (6.36¢) as Kgr
increases from zero to infinity.

(e) Effect of transverse velocity gradients

As a final example, we consider the classical Taylor problem with adsorption
and desorption at the wall. This problem is analogous to the mass transfer prob-
lem studied by Aris (1959) using the moments technique but our results are
different as we do not include diffusion on the wall. For the sake of simplicity, we
treat here only the Couette flow case with adsorption and desorption at the top
surface. The relevant mathematical model is given by

dC oCy  9°Cy
o WG = e (37)
ac, aC

aC,

—a—y—f + ¢2(Cr—C/K)=0; y=1, (6.39)

Phil. Trans. R. Soc. Lond. A (1995)
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0Ct
— =0 =0 6.40
ay ) y ) ( )
where
P = @pa, ¢? = a’k, /Dy, (6.41)

and all other parameters are as defined previously. As it is convenient to analyse
(6.37)—(6.40) using the spatial centre manifold approach, we define 7 =pt, Z=2z/p
and take Laplace transformation with respect to 7, so that we can eliminate Cs
and obtain the following simplified model for the transformed variable Cf(Z Y,8):

oG, 1 [8C, - ]
= — 42
9z = I(y) [ R (6.42)
aCs oA
—_— = - : =1 4
83.} 45 Cfa Yy ) (6 3)
oC;
1 =0 =0 44
oy 0; y=0, (6.44)
where
®? = spK 2/ (spK + ¢2). (6.45)

Let A; (i =0,1,2,...) be the eigenvalues and v; (¢ = 0,1,...) be the respective
orthonormal set of eigenfunctions of the self-adjoint eigenvalue problem

d?y dy dy
a7 Fy)vs 4y (02 ot y=1 3 0 at y=0. (6.46)
Then, expanding Cr as
i(Z,y,8) = Y &(Z,9)v(y), (6.47)
=0
it may be shown that the effective equation satisfied by éy(z, s) is
dé A
'ﬁq = —'——OCO — 860000 + ,318 pCO, (648&)
dz P
A - Gczn
where B = ; e (6.48b)
1
= [y Gi=01...). (6.48¢)

We now consider some limiting cases of (6.48a). We first note that for K = oo,
2 = ¢2 which corresponds to the surface reaction case treated in §5 (for ¢? = 0,
this further reduces to the classical Taylor—Aris limit). For a flat velocity profile
with p — 0 and ¢? — 0 but the ratio p/¢? = p, remaining finite, we get

AO _ Ks

D 1+ Ksp,
Phil. Trans. R. Soc. Lond. A (1995)
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Substitution of these into (6.48a) and interchanging the spatial and time deriva-
tives using the result

0 1 0
E = —m‘a—z + O(pa), (650)

we recover the result given by (6.11).
When p and p, are both small, but their ratio ¢? is finite, (6.48a) may be
simplified to

Ocg | 1 0Oco [ _puK® N Bipad: ] 0%co
or 1+ K0z |[(K+1)®  (K+1)3] 022’

where (3, is given by (3.18). Thus, when the adsorption, desorption and transverse
diffusion timescales are of the same order of magnitude but much smaller than
the axial convective timescale, the effective dispersion coefficient is given by

K2 (u)? (u)2a?

D, = :
(K +1)3 k, A Dy (K +1)3

For K — 0, this reduces to the Taylor—Aris limit while for D,, — oo (or for
flat velocity profile, 8; = 0), it reduces to the limit given by (6.11). However,
we see from (6.52) that D, is not a sum of these two limits. Thus adsorption
and desorption reduce the Taylor—Aris contribution but there is always a contri-
bution due to finite rate of adsorption. Analysis of (6.52) shows that the effec-
tive diffusivity is a monotonic decreasing function of K if 842 > 1. Similarly,
if 1> 81¢? > (2/y/3—1), D, is a non-monotonic function of K but its global
maximum is attained at K = 0. If (2/4/3 — 1) > $14? > 0, the sum of the two
contributions could be higher than the Taylor—Aris contribution. Finally, we note
that when adsorption and desorption are much faster than transverse diffusion,
the effective velocity and diffusivity are reduced by a factor (1+ K) and (1+ K)?3,
respectively.

(6.51)

(6.52)

7. Summary and conclusions

We have used the centre and invariant manifold theories to analyse a class of
dispersion phenomena involving a chemically active solute. Some of our results
are simply extension and validation of classical results. These include a complete
derivation of diffusive eigenfunctions for some common channel geometries; the
correct convergence arguments for higher order terms; the distinction between
spatial and temporal evolution at higher orders and the proper time and space
scalings to allow a dispersion description including an upper bound on the rate
of the bulk reaction and the possibility of describing all surface reactions with
arbitrary rates and how they reduce dispersion by removing solutes near the wall.
There are, however, some new results. The possibility of inducing dispersions by
an adsorption/desorption mechanism is introduced with a curious dependence on
the adsorption equilibrium constant K. The maximum at K = 2 is especially
intriguing. The explanation of anomalous dispersion in a chromatograph due to
a nonlinear Langmuir adsorption mechanism is also demonstrated. The long tails
induced by this mechanism severely limit the performance of separation chro-
matography. The distortion of apparent bulk reaction by a nonlinear coupling
among bulk reaction, diffusion and convection is suggested. Finally, the possibil-

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

\
A
[\
N

A

a
//\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
'\

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

74 V. Balakotaiah and H.-C. Chang

ity of inducing steady-state dispersion by a coupling between bulk reaction and
transverse velocity gradient has very practical implications. The performance of
chemical reactors, which are usually operated under steady conditions, is inti-
mately related to the dispersion. The derivation of effective equations describing
the steady-state distribution of the solute concentration will allow an accurate
assessment of the overall conversion. These effective equations must, however, be
accompanied by appropriate steady-state boundary conditions at the inlet and
exit which require an analysis of at least the inlet boundary layer. We shall defer
these results till a later manuscript.
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